日日噜噜噜夜夜爽爽狠狠22_中文字幕在线不卡_久久久伦理_久久综合激情网_曰批免费视频播放免费_狠狠做五月爱婷婷综合

position: EnglishChannel  > InnovationChina> Quantum Tech: China's Scientific Pride

Quantum Tech: China's Scientific Pride

Source: | 2023-11-10 11:26:40 | Author: LIANG Yilian

Xue Qikun's?working?in?Tsinghua University.?(PHOTO?provided?by?Tsinghua University)

By?LIANG?Yilian

Chinese physicist Xue Qikun was awarded the 2024 Oliver E. Buckley Prize by the American Physical Society on October 24. This marks the first time a Chinese scientist has won the top prize in condensed matter physics since the award was founded in 1953.

Xue received the award for his research on topological insulators and innovative breakthroughs in experimentally discovering the quantum anomalous Hall effect (QAHE) in a magnetic topological insulator.

This significant achievement and a series of breakthroughs Chinese scientists made in recent years in the quantum field, show that the country's quantum technology ranks among the best in the world.

Catching up, qubit by qubit

Quantum computing is based on the principles of quantum mechanics and qubits. In September 2019, Google launched a 53 qubit computer called Sycamore, which took only 200 seconds to calculate a mathematical algorithm. At that time the world's fastest supercomputer Summit took two days to do the same task, and the U.S. took the lead in achieving "quantum supremacy."

A year later, China successfully developed the 76-photon quantum computing prototype "Jiuzhang," which solved the mathematical algorithm Gaussian Boson sampling in just 200 seconds, compared to 600 million years for the world's fastest supercomputer at the time. This made China the second country in the world to achieve "quantum supremacy."

Now, Jiuzhang 3.0 is able to solve a Gaussian Boson sampling problem ten quadrillion times faster than Frontier, the world's current most powerful supercomputer.

"If you look at the West — the U.S., Europe — there haven't been a lot of people talking about repeating [Google's 2019] experiment," John Martinis, a former Google researcher who led the team to build Sycamore, told Scientific American, adding "I admire, in China, that they want to do this seriously."

"In the three major fields of quantum, we are among the top in all aspects. China's quantum computing ability used to be relatively backward, but now it has caught up," Guo Guangcan, academician of the Chinese Academy of Sciences (CAS) told Xinhua.

Quantum tech leader

From "Jiuzhang" to "Jiuzhang 3.0," and from "Zuchongzhi" to "Zuchongzhi 2," China's quantum technology is gaining momentum.

The rapid development of China's quantum research benifits from government support. Pan Jianwei, an academician at CAS, attributed the surge in quantum research to China's institutional advantage of "uniting resources on big things."

Pan took the China-developed quantum satellite Micius as an example. Every component of the satellite has come from the effort of various scientific research institutes such as the Shanghai Institute of Technical Physics CAS, Innovation Academy of Microsatellites of CAS, and National Astronomical Observatories, CAS.

"Different organizations have provided us with the basic components we need, giving us a solid engineering foundation for our innovative ideas. Some of my colleagues abroad have had similar scientific ideas, but no country has fully supported them like our country," said Pan.

"These achievements have benefited from the continuous growth of the national scientific and technological strength and the long-term profound accumulation of basic scientific research since China's reform and opening up. Therefore, the honor belongs not only to each researcher of the team, but also to the country," Xue Qikun told a media on October 25.

Challenges ahead

Although China is a leading country in quantum technology, it is still facing challenges, such as a lack of more talent in this field.

In 2021, the word "quantum information" first appeared in the "14th Five-Year Plan" and the "Government Work Report." However, this year, the Ministry of Education has officially included quantum information science in undergraduate education, to speed up the training of

experts in the quantum field. This will assist more and more young researchers to flow in to the quantum field and contribute to the industry.

Quantum computing is a tough subject, and the current research is still at the early stages of quantum technology, which is still full of challenges in obtaining a breakthrough of basic physics. "The global race for quantum computing is essentially more like a marathon, with a long road ahead," USTC's Professor Guo Guoping told People's Daily.

Editor:梁依蓮

Top News

Large Unmanned Cargo Aircraft Makes its Debut

China's domestically developed tonne-class large unmanned transport aircraft recently completed its maiden flight in Shandong province, marking a significant advancement in the field of high-end unmanned aviation equipment.

Open Scientific Infrastructure: Catalyst for Intl. Sci-tech Cooperation

It is necessary to promote the opening up and sharing of scientific research infrastructure, make good use of multilateral mechanisms, and establish and improve international open sharing platforms, Chen Jiachang, China’s vice minister of science and technology, said at the Open Science International Forum, part of the 2025 Zhongguancun Forum Annual Conference, on March 28.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: 久久AV无码精品人妻糸列 | 国产精品天干天干在线观看 | av综合在线观看 | 国产亚洲精品A在线无码 | 国产精品乱码久久久久久小说 | 中国老妇女50xxxxhd | 91小蝌蚪| 无敌神马琪琪观看影院在线 | 在线亚洲不卡 | 婷婷五月深深久久精品 | 永久免费a片在线观看全网站 | 国产成人精品一区二区视频 | 成人无码A片一区二区三区免费看 | 狠狠色综合激起情丁香色五月 | 亚洲AV无码乱码国产精品久久 | 久久一日本综合色鬼综合色 | 婷婷射精av这里只有精品 | 美女劈开腿让男人桶到高潮 | 三个男吃我奶头一边一个视频 | 强壮公弄得我次次高潮HD | 任你干草精品视频免费不卡 | 国产无遮挡又黄又爽奶头 | 国产重口老太和小伙乱 | 亚洲av乱码一区二区三区 | 人妻洗澡被强公日日澡 | 蜜桃视频在线观看入口 | 成人综合亚洲日韩欧美色 | 69国产成人综合久久精品 | 无码精品人妻一区二区三区aV | 日本真人边吃奶边做爽动态 | 视频网站无码专区遭暴露 | 影音先锋AⅤ天堂资源站 | 夜夜偷天天爽夜夜爱 | 伊人精品久久久 | gogogo免费高清看中国 | 亚洲AV永久无码天堂网国产 | 肉欲啪啪无码人妻免费 | 国产成人啪精品视频免费网 | 色惰日本视频网站 | xxxx另类黑人 | 色婷婷亚洲一区二区综合 |